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DESIGNING THE COMPLEX MONITORING 
IN DISTRIBUTED INFORMATION AND COMMUNICATION SYSTEMS

This paper explores the development and implementation of a comprehensive monitoring and management 
solution designed to ensure high Quality of Service (QoS) in Distributed Information and Communication 
Systems (DICS). It focuses on the prerequisites and technological foundations necessary for the early detection 
of anomalies in network performance and the automatic reallocation of resources across multiple layers 
of infrastructure, including network, computational, and service levels. As modern DICS operate in increasingly 
complex and dynamic environments, maintaining stability and service quality requires adaptive, intelligent, 
and scalable solutions.

The proposed architecture is based on the integration of distributed telemetry agents, centralized telemetry 
storage systems, and hybrid data processing methodologies. These tools work together to analyze performance 
indicators like latency, jitter, packet loss, CPU load, and bandwidth usage in real time, enabling proactive 
response to performance degradation or resource overloads.

A key aspect of the system is its decision-making and automation capability, achieved through integration 
with modern orchestration and network management environments. These environments support near real-
time adaptation of infrastructure based on analytical insights provided by the monitoring system, thus enabling 
self-healing, load balancing, and failover mechanisms without human intervention.

The designed solution is modular and interoperable, making it suitable for seamless integration into 
existing network and service management platforms. It enhances the reliability, fault tolerance, and scalability 
of distributed architectures, particularly in scenarios involving high user demand, geographic dispersion, 
heterogeneous infrastructure (including cloud and edge computing), or stringent SLA requirements. By enabling 
intelligent monitoring and automatic adaptation, the system ensures sustained service quality, operational 
efficiency, and resilience even under conditions of unpredictable load spikes or security threats.

Key words: distributed ICS (DICS), monitoring, quality of service (QoS) management, adaptive algorithms, 
anomalies, machine learning, scaling.

Formulation of the problem. The current stage 
of development of information and communication 
technologies (ICT) is characterized by rapid growth 
of data volumes and expansion of the range of 
services provided through distributed information 
and communication systems (DICS). Advances in 
cloud computing, virtualization, and containerization 
(Kubernetes, Docker, etc.), as well as the growing 
popularity of microservice architecture, have led 
to a more complex infrastructure structure and 
management. On the one hand, users need a wide 
range of available services 24/7 with guaranteed 
quality of service (QoS), and on the other hand, 

system administrators and telecom operators are 
forced to look for more flexible approaches to ensure 
reliability, performance, and scalability in the face of 
high load and dynamic changes in network topology.

This situation is caused by two key trends. First, 
the number of devices connected to the network is 
constantly increasing, which is being fueled by the 
proliferation of the Internet of Things (IoT) and smart 
sensor systems. This creates both a growing load on 
the network infrastructure and the need for constant 
monitoring and analysis of relevant data. Secondly, 
business processes that serve large networks 
increasingly require guaranteed QoS levels from ICT 
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systems to maintain competitiveness and meet the strict 
requirements of Service Level Agreements (SLAs). 
At the same time, managing distributed infrastructure 
becomes more complicated, as resources and services 
are often located in different geographical areas that 
may belong to different operators or cloud platforms 
(AWS, Azure, Google Cloud, etc.). Unpredictable 
transit delays, various routing mechanisms, variable 
bandwidth, and the possibility of local overloads or 
failures of individual components should be taken 
into account. Therefore, there is a need to improve 
methods and algorithms for monitoring and managing 
QoS to ensure stable operation of services under any 
network and computing load.

Analysis of recent research and publications. 
The issue of ensuring proper quality of service 
(QoS) in distributed information and communication 
systems has long been in the focus of attention of the 
scientific community and the telecommunications 
industry. Traditionally, the approaches recommended 
by ITU-T (in particular, E.800 [1]) have been used 
to assess and maintain QoS, which offer basic 
methods for measuring key indicators (delay, jitter, 
throughput, packet loss, etc.). However, with the 
proliferation of cloud computing, virtualization, and 
the widespread adoption of the Internet of Things 
(IoT), such traditional systems are increasingly 
proving insufficient for monitoring large, distributed, 
and dynamically changing environments. However, 
as the topology became more complex and the load on 
network nodes increased, it became clear that a shift 
to a proactive monitoring and management paradigm 
was needed to ensure a high level of QoS in distributed 
systems. At the same time, there is a growing interest 
in machine learning (ML) algorithms and artificial 
intelligence systems capable of predicting workload. 
These tools allow to identify patterns (seasonality, 
daily cycles, activity spikes) based on historical 
data, allocating additional resources (e.g., computing 
nodes, bandwidth) in advance. This approach is 

mainly used in cloud and virtualized environments, 
where resource allocation or release can be performed 
in an almost automated manner [3, 6]. The papers [4, 
7] addresses this problem by monitoring SDN flows 
and service logs, which is a very important feature of 
a monitoring system that can reduce the risk of DoS 
and keep the service component available to users. 
Recent studies emphasize the growing role of highly 
reliable real-time monitoring of cloud services and 
networks. In particular, in [5], the authors consider 
traffic engineering in service-oriented software-
defined networks, paying special attention to the 
operational monitoring of network flow parameters 
to implement QoS-oriented routing and ensure 
the required level of QoE for end users. However, 
the monitoring in this study focuses mainly on the 
network aspects, without taking into account data 
on services or computing resources. This conclusion 
prompted us to develop a comprehensive system 
capable of providing a high level of quality of service 
(QoS) in the face of dynamic changes in network 
infrastructure and diverse loads.

Task statement. The main purpose of the article 
is to investigate the effectiveness of the interaction 
between information technologies and neural 
networks for automated text content generation and 
to determine the optimal approaches to the use of 
these technologies in real industries such as writing, 
marketing, and business. In addition, the paper 
examines the impact of modern neural network 
architectures on the quality of text generation, 
and explores the features of using basic neural 
network models for text generation. Criteria for 
a comprehensive assessment of the quality of the 
generated content are proposed, and prospects for 
the development of synergy between information 
technology and neural networks are identified. 
Forecasts are given on the trends of the industry 
development, including increasing the adaptability of 
texts to the cultural or linguistic context.

Fig. 1. DICS architecture diagram
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Outline of the main material of the study. 
With the rapidly increasing complexity of modern 
distributed information and communication systems 
(DICS), there is a need for a comprehensive approach 
to monitoring and managing the quality of information 
services (QoS).

The enhanced architecture of Distributed 
Information and Communication Systems (DICS) 
consists of an expanded network of interconnected 
components that ensure data storage, processing, 
and transmission between users and cloud resources. 
The central element is the cloud platform, which 
provides computing power and is connected to data 
servers and virtual machines. Data servers process 
requests, interact with databases, and facilitate data 
transmission through network routers.

To meet user needs and strict SLA requirements, 
QoS monitoring and management systems must not 
only diagnose the current state, but also proactively 
prevent potential failures or dramatic deterioration in 
performance. Several key factors complicate this task:

Dynamic changes in infrastructure. (DICS) consist 
of interconnected subsystems (network routers, 
data servers, virtual machines, containers, etc.), the 
configuration of which can change at any time due 
to load balancing, automatic autoscaling, or software 
updates.

In multiservice environments, services with 
varying degrees of criticality are provided 
simultaneously.

QoS degradation can arise from several 
interconnected factors:

–	 Excessive user traffic may result in the 
overloading of network channels, application servers, 
or databases, disrupting normal operations.

–	 Insufficient computing resources often lead 
to suboptimal performance of service components, 
directly affecting their ability to handle requests 
efficiently.

–	 Inefficient network routing that fails to account 
for user traffic patterns or the geographic locations of 
users and service components can exacerbate delays 
and packet losses.

Solving the problem of proactive monitoring and 
adaptive management of the quality of information 
services in distributed ICS requires an integrated 
approach that covers all levels of the system: 
from physical and channel interaction (telemetry 
collection, low-level monitoring) to high-level 
service orchestration (dynamic scaling in the cloud, 
reconfiguring routes in SDN, traffic prioritization).

Each node or group of nodes in the DICS is 
equipped with agents that measure key indicators: 
bandwidth, latency, jitter, packet loss, CPU 
utilization, memory usage, virtual machine status, etc. 
Data collection technologies. To minimize the delay 
in data transmission, agents can perform primary 
processing (aggregation, hashing) locally and send 
the compressed information to central monitoring 
nodes.

Alert system. In case of significant deviations from 
normal indicators or critical events, notifications are 
sent (via e-mail, SMS, push channels) and/or external 
scripts are automatically called to trigger control 
mechanisms.

Linear and polynomial regression. They are used 
as basic approaches to identify trends (e.g., slow 
growth of delay) and extrapolate short-term load. 
ARIMA, SARIMA, and other time-based models. 
Used for more accurate modeling of time series 
with seasonal fluctuations (daily/weekly cyclicality). 
Machine learning methods (neural networks, 

Fig. 2. Impact of DDoS attacks on latency

Table 1
Comparison of QoS parameters and service types

Service Type Critical 
Metrics

Tolerated 
Packet 

Loss (%)

Required 
Bandwidth 

(Mbps)
Video 
Streaming

Latency, 
Jitter

1 5

Voice 
Communication

Latency, 
Jitter

1 0.1

Backups Bandwidth 5 100 Fig. 3. Multi-level monitoring system
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Random Forest, XGBoost). They allow taking into 
account nonlinear dependencies between parameters 
and predicting unusual situations in advance. For 
each indicator, statistical thresholds (mean, standard 
deviation) are calculated, when exceeded, the system 
generates a signal of a possible deviation. Clustering 
models (K-means, DBSCAN). Metrics belonging to 
clusters with low density or that do not correspond to 
“typical” centroids are treated as anomalous. Distance 
estimation (Mahalanobis distance, Isolation Forest). 
Allows you to automatically detect points or entire 
subsets of data that have atypical characteristics 
compared to the majority. If possible, the central 
components of the monitoring system should be 
duplicated in geographically distant data centers.

Effective proactive monitoring and adaptive 
management of information service quality in DICS 
rely on continuous improvement and extension of 
the monitoring infrastructure. As networks grow in 
scale and complexity, new technological solutions 
and architectural models become relevant to handle 
emerging challenges.

By placing data preprocessing and partial analytics 
(e.g., anomaly detection) at edge or fog nodes, the 
system can reduce the load on central servers and 
minimize latency.

Deploy monitoring agents across multiple public 
or private cloud providers, enabling unified visibility 
into distributed workloads. Harmonize telemetry 
formats (e.g., OpenTelemetry) to collect data 
consistently regardless of the cloud platform. Use 
federated learning or distributed AI techniques to 
train and improve anomaly detection models across 
different cloud environments without transferring 
raw data.

Incorporate deeper neural network architectures 
(LSTM, GRU, Transformers) for more accurate 
forecasting of network load and resource utilization. 
Apply reinforcement learning for dynamic adaptation 
strategies, where the monitoring system optimizes 
its own decision-making policies based on real-
time feedback. Improves trust and transparency for 
operators managing critical infrastructure.

Extend the monitoring system to collect and 
analyze security-related telemetry (intrusion 
attempts, unexpected port scans, lateral movement 
in the network). Correlate security metrics with 
performance data to detect malicious traffic patterns 
that also affect QoS (e.g., DDoS attacks). Combine 
anomaly detection with network policy enforcement 
tools (firewalls, intrusion prevention systems) to 
isolate compromised nodes or throttle suspicious 
traffic. Implement runbooks or playbooks that trigger 

automated mitigation steps based on predefined 
security thresholds.

Adopt tools like Terraform or Ansible to define and 
manage monitoring environments, enabling repeatable 
and version-controlled deployments. Automate 
scaling of monitoring agents or central servers in 
response to usage spikes or newly deployed services. 
By extending the proposed monitoring system with 
edge/fog processing, advanced AI techniques, and 
multi-cloud orchestration, organizations can achieve 
even higher levels of agility, resilience, and efficiency 
in managing distributed ICS. Incorporating enhanced 
security metrics, self-healing mechanisms, and robust 
disaster recovery strategies will further solidify the 
system’s reliability and responsiveness.

The IMS platform, operating at the core network 
level, is a key architecture enabling Voice over LTE 
(VoLTE) and other IP-based multimedia services. 
It consists of critical components responsible for 
session control, subscriber authentication, and media 
handling. These components function at various 
sublevels within the core network:

1.	 Session control is managed by the Call Session 
Control Function (CSCF), which operates at the 
application signaling level.

2.	 Subscriber authentication is handled by the 
Home Subscriber Server (HSS), functioning at the 
database level.

3.	 Media handling is performed by the Media 
Resource Function (MRF), which operates at the 
media processing level.

Given the critical role IMS plays in delivering 
VoLTE and multimedia services, it is essential to 
implement robust firewalls to safeguard the network 
against unauthorized access, cyberattacks, and service 
disruptions. Firewalls, deployed at the network 
level, particularly at the perimeter and between 
network segments, are crucial for protecting the IMS 
platform’s core infrastructure from external threats. 
They filter incoming and outgoing traffic, ensuring 
that only legitimate traffic is allowed while blocking 
potentially malicious activity. Firewalls also provide 
essential protection for sensitive subscriber data and 
critical IMS components like the HSS and MRF, 
maintaining both privacy and service reliability.

In addition to firewalls, a notification system, 
operating at the application level, plays a vital role 
in network management by providing real-time 
alerts in the event of significant deviations from 
normal operating conditions or critical system 
failures. When key QoS parameters or network 
events exceed predefined thresholds, the system 
sends notifications via various channels such as 
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email, SMS, or push alerts. This allows network 
operators to be immediately informed of potential 
issues, enabling quick intervention and minimizing 
service disruptions. Furthermore, external scripts 
can be automatically triggered in response to these 
alerts, activating predefined mechanisms to control 
or mitigate the impact of the issues. For example, if 
a surge in packet loss or latency is detected, scripts 
may be executed to reroute traffic, adjust resources, 
or activate backup systems, ensuring the network 
continues to perform optimally even during periods 
of stress.

To complement this security layer, Vodafone 
employs a sophisticated notification system, 
functioning at the application level, to continuously 
monitor its network. In the event of deviations from 
expected QoS parameters (e.g., high latency, packet 
loss, or jitter spikes), the system triggers immediate 
alerts via multiple channels such as email, SMS, and 
push notifications to the operations team.

For example, in the case of a major mobile operator, 
parameters such as latency, jitter, packet loss, and 
throughput are continuously monitored to assess 
network performance. These metrics are measured 
at the transport level of the network. Operators often 
use regression models like linear and polynomial 
regression to identify trends, such as gradual increases 
in latency, allowing them to anticipate potential issues 
and optimize network resources.

Time series models such as ARIMA and SARIMA 
are employed to account for seasonal variations, such 
as daily or weekly traffic cycles. These models help 
telecom operators refine their predictions, making 
them more accurate for specific time frames. Machine 
learning techniques, including neural networks, 
Random Forest, and XGBoost, are increasingly used 
to capture complex, non-linear relationships between 
network parameters. They offer an advantage in 
predicting unexpected situations, such as sudden 
spikes in traffic or network congestion, which would 
otherwise be difficult to foresee using traditional 
methods.

Additionally, statistical thresholds are set for each 
QoS parameter (e.g., mean, standard deviation), and 
the system is programmed to trigger alerts whenever 
these limits are exceeded, signaling potential issues 
that could affect service quality. Clustering methods 
like K-means and DBSCAN are used to detect 
outliers, with any metrics that deviate significantly 
from typical patterns flagged as anomalies. These 
anomalies can indicate a network fault or congestion 
event, enabling operators to take preemptive action. 
For more precise anomaly detection, distance-based 

methods like Mahalanobis distance and Isolation 
Forest can be employed to identify data points or 
subsets that exhibit atypical behavior.

In a live operator environment, such as 
telecommunications networks, redundancy and 
fault tolerance play a key role in ensuring high 
availability, reliability, and performance. To achieve 
this, monitoring systems are duplicated across data 
centers located in different geographic regions. 
A  telecom operator may have data centers, for 
example, in New York, Los Angeles, and Frankfurt, 
where identical instances of the monitoring system 
operate, including components for data collection, 
processing, and notification delivery. This setup 
ensures that if one data center fails – due to a 
power outage, network disruption, or natural 
disaster – the monitoring system automatically 
switches to another data center. Load balancers, 
such as HAProxy or Google Cloud Load Balancing, 
distribute incoming monitoring traffic across these 
data centers, taking into account latency, health 
checks, and available capacity, reducing the risk of 
a single point of failure and ensuring continuous 
network monitoring.

Fault tolerance is further enhanced by 
automatically launching backup instances for critical 
components. Monitoring systems utilize modular 
containerized components, such as data collectors, 
analytics engines, and alerting modules, which are 
managed through orchestration tools like Kubernetes. 
This tool continuously monitors the state of containers 
using liveness and readiness probes. For instance, if 
the virtual machine running the analytics engine for 
processing latency data fails, Kubernetes detects the 
issue and restarts the container, minimizing downtime 
and ensuring uninterrupted user service.

Fig. 4. The typical scheme of IMS
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Proactive network management is also a 
key advantage of monitoring systems, as they 
continuously track key performance indicators 
such as latency, jitter, packet loss, and bandwidth. 
Monitoring agents installed on network devices – 
routers, switches, and base stations – send real-time 
metrics to the monitoring system using protocols like 
SNMP or streaming telemetry, such as gRPC and 
OpenTelemetry. This data is stored in time-series 
databases like InfluxDB or Prometheus, allowing 
efficient querying and visualization through tools 
such as Grafana. Alerting rules are configured to 
send notifications when predefined thresholds are 
exceeded – for example, if latency surpasses 100 ms 
for five minutes, the on-call team receives an alert via 
PagerDuty. This continuous monitoring helps detect 
early signs of network degradation before they affect 
users. If, for instance, latency on a particular network 
path begins to rise, the monitoring system triggers 
an alert, allowing operators to reroute traffic to less 
congested paths and prevent customer complaints 
about dropped connections or slow internet speeds.

Additionally, monitoring systems provide real-
time insights to ensure stable and high-quality service. 
Machine learning models integrated into monitoring 
pipelines predict traffic spikes or anomalies. 
Automation tools like Ansible or Terraform execute 
predefined scripts based on this data – if, for instance, 
tower bandwidth usage exceeds 80  %, additional 
resources are allocated automatically. This proactive 
approach allows telecom operators to maintain stable 
and high-quality service even during peak load 
periods while adhering to service level agreements 
(SLAs).

In the case of Vodafone, ensuring optimal QoS 
is essential for maintaining the reliability of their 
voice and multimedia services, especially in a 
highly competitive market. The operator consistently 
monitors key QoS parameters like latency, jitter, 
packet loss, and throughput to ensure a seamless 
experience for its users.

Vodafone also leverages time series models such 
as ARIMA and SARIMA to account for daily and 
weekly traffic cycles, which are critical for managing 
network load during peak times. In addition to these 
traditional methods, Vodafone has incorporated 
advanced machine learning techniques, such as 
neural networks and XGBoost, to better handle non-
linear dependencies in network traffic.

To detect performance anomalies, Vodafone 
employs clustering techniques like K-means and 
DBSCAN, identifying any metrics that deviate 
significantly from typical patterns. This enables 

the company to spot potential issues early, such as 
network outages or sudden drops in service quality. 
Advanced anomaly detection methods, including 
Mahalanobis distance and Isolation Forest, are used 
to pinpoint specific instances where network behavior 
falls outside expected norms, allowing for faster issue 
resolution.

Vodafone also emphasizes redundancy and 
fault tolerance in its monitoring systems. To 
ensure uninterrupted service, they replicate critical 
components across geographically diverse data 
centers.

1.	 Real-Time Traffic Rerouting. Vodafone’s 
monitoring systems continuously analyze network 
congestion levels. If a particular network path 
experiences excessive latency or packet loss, traffic 
is dynamically rerouted through alternative, less 
congested routes.

2.	 Proactive Network Maintenance. By integrating 
predictive analytics, Vodafone can anticipate hardware 
failures in critical infrastructure such as base stations 
and fiber optic links. For example, if a base station 
starts showing a gradual increase in error rates or 
unusual temperature spikes, preemptive maintenance 
can be scheduled to prevent potential outages.

3.	 Optimized Video Streaming Performance. 
Using real-time telemetry data, Vodafone adjusts 
video streaming bitrates based on network conditions. 
If the system detects high congestion in a region, it 
dynamically reduces the resolution of video streams to 
prevent buffering, ensuring a smooth user experience.

4.	 Load Balancing in Cloud Infrastructure. 
Vodafone’s cloud-based services leverage load 
balancers like HAProxy and Google Cloud Load 
Balancing to distribute traffic among multiple servers. 
If one server cluster experiences high CPU or memory 
usage, new sessions are redirected to underutilized 
servers to maintain consistent performance.

5.	 Emergency Response Management. In the 
event of natural disasters or large-scale network 
failures, Vodafone’s monitoring system prioritizes 
emergency communications by allocating additional 
network resources to first responders. This ensures 
that critical services remain operational even under 
extreme conditions.

6.	 Customer Experience Enhancement through 
AI-Driven Support. AI-driven monitoring tools 
analyze customer complaints related to network 
quality and correlate them with real-time performance 
data. If multiple complaints arise from a specific 
area, Vodafone’s system automatically triggers an 
investigation, allowing for faster resolution of service 
issues.
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By employing a combination of predictive 
analytics, machine learning, and robust infrastructure, 
Vodafone ensures a consistently high level of QoS 
for its users while proactively addressing network 
challenges in real time.

To evaluate the QoS of the IMS platform, multiple 
test scenarios were executed under controlled 
conditions. End-to-end testing was performed by 
initiating VoLTE calls between test devices while 
monitoring key performance indicators such as call 
setup time, voice clarity, and connection stability. 
Load testing involved simulating thousands of 
concurrent calls and data sessions to observe system 
behavior under peak traffic. Packet-level analysis 
was conducted using Wireshark, capturing real-time 
traffic to measure latency, jitter, and packet loss.

To illustrate real-world QoS challenges, we 
analyzed Vodafone VoLTE network performance. 
During peak hours, call setup time increased by 
3 %, reaching 310 ms, slightly exceeding the 300 ms 
threshold. Packet loss under heavy load rose to 
1.5 %, affecting voice clarity. Network logs showed 
that congestion primarily occurred at eNodeB 
backhaul links. Using the formula for Packet Loss 
Rate (PLR):

	  = ⋅ 
 

100,
LP

PLR
T

	 (1)

where LP – Lost Packets; T– Total Packets sent
For a stress test with 10 million packets sent and 

150,000 lost packets, the calculated PLR was 1.5 %. 
Comparing our testbed results with Vodafone real-
world data:

1.	 Latency remained stable in both cases, 
averaging 140 ms.

2.	 Packet loss exceeded thresholds (1.5  % vs. 
1.2 %), suggesting bottlenecks in high-load scenarios.

3.	 Jitter spikes (Vodafone: 35  ms, Lab: 30  ms) 
were noticeable but tolerable.

To assess the impact on call quality, Hammer Call 
Analyzer measured parameters like MOS (Mean 
Opinion Score) and call drop rates during peak 
load periods. Advanced machine learning models, 
specifically Long Short-Term Memory (LSTM) 
networks, were trained on historical network data 
to predict congestion events and optimize resource 
allocation dynamically. These AI-driven insights 
allowed for real-time adjustments in the network 
configuration, improving QoS by proactively 
managing capacity and mitigating performance 
degradation, ensuring a seamless VoLTE experience 
for Vodafone’s users.

The data from the stress test with 100,000 
concurrent calls reveals several important insights 
into the performance of the network under heavy 
load. Below is a more detailed analysis based on the 
metrics provided:

1.	 The CSSR is slightly below the expected value, 
indicating a small number of failed call setups under 
stress. Although 98.5 % is a high success rate, this small 
degradation may result in some users experiencing 
issues when trying to initiate calls during peak times. 
This metric is critical for user experience, and while 
it is still acceptable in most cases, attention should 
be given to optimizing network resource allocation to 
reduce call setup failures during high demand.

2.	 Under normal conditions, the packet loss rate 
is within acceptable limits, but during the stress test, 
packet loss increased to 1.2 %, slightly exceeding the 
expected threshold. This suggests that the network is 
experiencing congestion under heavy load, leading 
to packet loss. Although this is marginally above the 
threshold, it indicates a potential area for optimization. 
Packet loss above 1 % can have a significant impact 
on service quality, especially for VoLTE calls, leading 
to audio dropouts or poor call quality.

3.	 The average call setup time is within the 
acceptable range, even under load. A 2 % increase in 
call setup time under stress is well within operational 
limits, suggesting that the network is managing to 

Fig. 5. Comparison of QoS Metrics

Table 2
Performance Metrics

Metric Call Setup Success 
Rate (CSSR)

Packet Loss 
Rate

Average Call 
Setup Time Jitter Latency System 

Throughput
Expected Value > 99 % < 1 % < 300 ms < 30 ms < 150 ms > 1 Gbps
Measured Value 98.5 % 0.8 % 280 ms 25 ms 140 ms 1.2 Gbps
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handle the load efficiently in terms of call initiation. 
However, it is important to continue monitoring this 
parameter as increased traffic may eventually lead to 
higher delays.

4.	 Jitter remains within acceptable limits during 
normal operation. However, during the stress test, 
occasional spikes in jitter beyond 30ms were observed. 
While jitter in itself is not an immediate concern, these 
spikes can lead to noticeable issues in voice quality 
during calls. VoLTE traffic is particularly sensitive 
to jitter, and periodic fluctuations can degrade user 
experience by causing choppy audio or dropped 
calls. This suggests a need for further optimization to 
mitigate jitter during peak periods.

5.	 Latency remains stable and within the 
acceptable limits even under stress. The network 
has shown resilience in handling the increased 
traffic without experiencing excessive delays in 
packet transmission. While latency is well within 
the threshold, periodic monitoring of the network 
infrastructure is necessary to ensure it remains stable 
during prolonged periods of high traffic.

6.	 In the case of Vodafone, ensuring optimal 
QoS is essential for maintaining the reliability of 
their voice and multimedia services, especially in a 
highly competitive market. The operator consistently 
monitors key QoS parameters like latency, jitter, 
packet loss, and throughput to ensure a seamless 
experience for its users. For instance, Vodafone uses 
linear and polynomial regression models to track 
trends in latency and identify gradual increases that 
could indicate network stress. By analyzing these 
trends, Vodafone can predict potential bottlenecks and 
take corrective action before they impact customers.

Even under load, the network maintained 
throughput above 1 Gbps, ensuring that data-
intensive applications can function without 
significant degradation. To improve QoS during high 
traffic periods, implementing traffic prioritization 
mechanisms such as DiffServ or MPLS can help 
manage network resources more efficiently. These 
protocols enable better differentiation of traffic types, 
ensuring that critical services like VoLTE receive 
higher priority and are less likely to be affected by 
congestion. Addressing packet loss requires further 
capacity planning, particularly during peak periods, 
which may involve upgrading hardware such as routers 
and switches or allocating additional bandwidth to 
prevent congestion. Proactive bandwidth monitoring 
tools should be employed to detect potential congestion 
points before they impact performance.

Introducing dynamic and adaptive QoS policies 
based on real-time network load can optimize 

resource allocation. By leveraging real-time data 
on network conditions such as traffic volume, load 
distribution, and QoS parameters, the network can 
adjust its policies dynamically to ensure optimal 
service quality. For example, during periods of high 
load, the system could automatically allocate more 
resources to maintain call quality, while during low-
load periods, resources could be reallocated to other 
services. While jitter remains within acceptable limits 
in most cases, occasional spikes suggest the need 
for jitter mitigation strategies. Techniques such as 
buffer management, prioritization of VoLTE traffic, 
and improving network resilience can help reduce 
jitter during peak periods. Additionally, investing in 
network infrastructure that reduces congestion and 
improves packet delivery consistency can help keep 
jitter levels within desired thresholds.

Continuous monitoring should be implemented 
for all key QoS parameters, especially under heavy 
traffic conditions. This could include re-routing 
traffic, adjusting network configurations, or alerting 
the network operations team to potential problems. 
While the network performs well under most 
conditions, critical areas such as packet loss, jitter, 
and dynamic traffic handling require optimization to 
maintain a consistently high-quality user experience, 
particularly during high-demand periods.

Conclusions. This paper presents the development 
of a multi-level monitoring system for distributed 
information and communication systems (DICS), which 
includes telemetry agents, centralized data storage, and 
real-time analysis tools. By integrating technologies 
such as machine learning, edge/fog computing, and 
automated orchestration, the system ensures high 
QoS even under dynamic network conditions. The 
integration of advanced features like anomaly detection 
and adaptive resource management highlights the 
system’s ability to maintain a high level of Quality of 
Service (QoS) while reducing operational costs.

By detecting malicious activities such as DDoS 
attacks and integrating with firewalls and threat 
detection modules, the system ensures that security 
incidents are identified and mitigated in real-time. 
This proactive defense not only protects the network 
but also minimizes disruptions, ensuring continuous 
service availability.

This enables the detection of potential issues early, 
such as network outages or sudden drops in service 
quality. Advanced anomaly detection methods, 
including Mahalanobis distance and Isolation Forest, 
are used to pinpoint specific instances where network 
behavior falls outside expected norms, allowing for 
faster issue resolution.
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The analysis of the IMS platform in the context 
of a telecom system has provided valuable insights 
into the performance, security, and reliability of 
VoLTE services. The study examined key aspects 
such as Quality of Service (QoS) parameters, 
security mechanisms, and automated notification 
systems to ensure a seamless user experience. The 
findings highlight the importance of continuous 
monitoring, predictive analysis, and proactive 
network management in maintaining high service 
quality.

The implementation of these security 
mechanisms ensures the integrity of critical 
components like the Home Subscriber Server (HSS) 
and Media Resource Function (MRF). Key QoS 
parameters, including latency, jitter, packet loss, 
and throughput, were analyzed using statistical 
and machine learning models. Regression models, 
time series forecasting, and clustering methods help 
identify performance trends and detect anomalies. 
These techniques enhance the ability to optimize 

network performance and anticipate congestion 
before it affects end-users.

The study included end-to-end VoLTE call testing, 
load testing, and packet-level analysis using tools like 
Wireshark. Performance degradation was observed 
during peak traffic periods, particularly in packet loss and 
jitter. Stress testing confirmed that under heavy loads, 
network congestion primarily occurs at the eNodeB 
backhaul links. The system met most KPIs but showed 
slight degradation under peak conditions. The call setup 
success rate was slightly below the expected threshold. 
Packet loss exceeded the 1 % limit under heavy load. 
Jitter occasionally spiked beyond the 30ms threshold, 
while latency remained within acceptable limits. System 
throughput exceeded expectations, ensuring sufficient 
capacity for handling network traffic. IMS-based 
VoLTE networks meet most QoS standards, though 
peak traffic can cause slight degradation. Proactive 
monitoring and dynamic resource management are 
essential for sustaining high service quality, especially 
in the context of 5G development.
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Бобик Ю. В., Шпур О. М. РОЗРОБКА КОМПЛЕКСНОЇ СИСТЕМИ МОНІТОРИНГУ 
В РОЗПОДІЛЕНИХ ІНФОРМАЦІЙНО-КОМУНІКАЦІЙНИХ СИСТЕМАХ

У цій статті розглядаються питання розробки та впровадження комплексного рішення для 
моніторингу та управління, спрямованого на забезпечення високої якості обслуговування (QoS) 
у  розподілених інформаційно-комунікаційних системах (РІКС). Основна увага приділяється 
передумовам і технологічним основам, необхідним для раннього виявлення аномалій у роботі 
мережі та автоматичного перерозподілу ресурсів на різних рівнях інфраструктури – мережевому, 
обчислювальному та сервісному. Оскільки сучасні РІКС функціонують у дедалі складніших 
і динамічніших середовищах, підтримка стабільності та якості обслуговування вимагає адаптивних, 
інтелектуальних і масштабованих рішень.

Запропонована архітектура базується на інтеграції розподілених агентів збору телеметрії, 
централізованих систем зберігання телеметричних даних та гібридних методів обробки інформації. 
Ці інструменти працюють разом для аналізу показників продуктивності, таких як затримка, джиттер, 
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втрата пакетів, завантаження процесора та використання пропускної здатності в режимі реального 
часу, що дозволяє проактивно реагувати на погіршення продуктивності або перевантаження ресурсів.

Ключовим аспектом системи є її здатність до прийняття рішень і автоматизації, яка досягається 
завдяки інтеграції з сучасними середовищами оркестрації та управління мережею. Ці середовища 
забезпечують адаптацію інфраструктури майже в реальному часі на основі аналітичних даних, 
які надає система моніторингу, що дозволяє реалізовувати механізми самовідновлення, балансування 
навантаження та аварійного перемикання без участі людини.

Розроблене рішення має модульну структуру та забезпечує сумісність, що дозволяє легко 
інтегрувати його у вже наявні платформи управління мережею та сервісами. Воно підвищує 
надійність, відмовостійкість і масштабованість розподілених архітектур, особливо в умовах 
високого користувацького навантаження, географічної розподіленості, гетерогенного середовища 
(включаючи хмарні й периферійні обчислення) або жорстких вимог щодо рівня обслуговування (SLA). 
Завдяки інтелектуальному моніторингу та автоматичній адаптації система забезпечує стабільну 
якість обслуговування, ефективність роботи та стійкість навіть у разі непередбачуваних пікових 
навантажень чи кіберзагроз.

Ключові слова: розподілені ІКС (РІКС), моніторинг, управління якістю обслуговування (QoS), 
адаптивні алгоритми, аномалії, машинне навчання, масштабування.


