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DESIGNING THE COMPLEX MONITORING
IN DISTRIBUTED INFORMATION AND COMMUNICATION SYSTEMS

This paper explores the development and implementation of a comprehensive monitoring and management
solution designed to ensure high Quality of Service (QoS) in Distributed Information and Communication
Systems (DICS). It focuses on the prerequisites and technological foundations necessary for the early detection
of anomalies in network performance and the automatic reallocation of resources across multiple layers
of infrastructure, including network, computational, and service levels. As modern DICS operate in increasingly
complex and dynamic environments, maintaining stability and service quality requires adaptive, intelligent,
and scalable solutions.

The proposed architecture is based on the integration of distributed telemetry agents, centralized telemetry
storage systems, and hybrid data processing methodologies. These tools work together to analyze performance
indicators like latency, jitter, packet loss, CPU load, and bandwidth usage in real time, enabling proactive
response to performance degradation or resource overloads.

A key aspect of the system is its decision-making and automation capability, achieved through integration
with modern orchestration and network management environments. These environments support near real-
time adaptation of infrastructure based on analytical insights provided by the monitoring system, thus enabling
self-healing, load balancing, and failover mechanisms without human intervention.

The designed solution is modular and interoperable, making it suitable for seamless integration into
existing network and service management platforms. It enhances the reliability, fault tolerance, and scalability
of distributed architectures, particularly in scenarios involving high user demand, geographic dispersion,
heterogeneous infrastructure (including cloud and edge computing), or stringent SLA requirements. By enabling
intelligent monitoring and automatic adaptation, the system ensures sustained service quality, operational
efficiency, and resilience even under conditions of unpredictable load spikes or security threats.

Key words: distributed ICS (DICS), monitoring, quality of service (QoS) management, adaptive algorithms,
anomalies, machine learning, scaling.

Formulation of the problem. The current stage
of development of information and communication
technologies (ICT) is characterized by rapid growth
of data volumes and expansion of the range of
services provided through distributed information
and communication systems (DICS). Advances in
cloud computing, virtualization, and containerization
(Kubernetes, Docker, etc.), as well as the growing
popularity of microservice architecture, have led
to a more complex infrastructure structure and
management. On the one hand, users need a wide
range of available services 24/7 with guaranteed
quality of service (QoS), and on the other hand,
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system administrators and telecom operators are
forced to look for more flexible approaches to ensure
reliability, performance, and scalability in the face of
high load and dynamic changes in network topology.

This situation is caused by two key trends. First,
the number of devices connected to the network is
constantly increasing, which is being fueled by the
proliferation of the Internet of Things (IoT) and smart
sensor systems. This creates both a growing load on
the network infrastructure and the need for constant
monitoring and analysis of relevant data. Secondly,
business processes that serve large networks
increasingly require guaranteed QoS levels from ICT
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systems to maintain competitiveness and meet the strict
requirements of Service Level Agreements (SLAs).
At the same time, managing distributed infrastructure
becomes more complicated, as resources and services
are often located in different geographical areas that
may belong to different operators or cloud platforms
(AWS, Azure, Google Cloud, etc.). Unpredictable
transit delays, various routing mechanisms, variable
bandwidth, and the possibility of local overloads or
failures of individual components should be taken
into account. Therefore, there is a need to improve
methods and algorithms for monitoring and managing
QoS to ensure stable operation of services under any
network and computing load.

Analysis of recent research and publications.
The issue of ensuring proper quality of service
(QoS) in distributed information and communication
systems has long been in the focus of attention of the
scientific community and the telecommunications
industry. Traditionally, the approaches recommended
by ITU-T (in particular, E.800 [1]) have been used
to assess and maintain QoS, which offer basic
methods for measuring key indicators (delay, jitter,
throughput, packet loss, etc.). However, with the
proliferation of cloud computing, virtualization, and
the widespread adoption of the Internet of Things
(IoT), such traditional systems are increasingly
proving insufficient for monitoring large, distributed,
and dynamically changing environments. However,
as the topology became more complex and the load on
network nodes increased, it became clear that a shift
to a proactive monitoring and management paradigm
was needed to ensure a high level of QoS in distributed
systems. At the same time, there is a growing interest
in machine learning (ML) algorithms and artificial
intelligence systems capable of predicting workload.
These tools allow to identify patterns (seasonality,
daily cycles, activity spikes) based on historical
data, allocating additional resources (e.g., computing
nodes, bandwidth) in advance. This approach is

mainly used in cloud and virtualized environments,
where resource allocation or release can be performed
in an almost automated manner [3, 6]. The papers [4,
7] addresses this problem by monitoring SDN flows
and service logs, which is a very important feature of
a monitoring system that can reduce the risk of DoS
and keep the service component available to users.
Recent studies emphasize the growing role of highly
reliable real-time monitoring of cloud services and
networks. In particular, in [5], the authors consider
traffic engineering in service-oriented software-
defined networks, paying special attention to the
operational monitoring of network flow parameters
to implement QoS-oriented routing and ensure
the required level of QoE for end users. However,
the monitoring in this study focuses mainly on the
network aspects, without taking into account data
on services or computing resources. This conclusion
prompted us to develop a comprehensive system
capable of providing a high level of quality of service
(QoS) in the face of dynamic changes in network
infrastructure and diverse loads.

Task statement. The main purpose of the article
is to investigate the effectiveness of the interaction
between information technologies and neural
networks for automated text content generation and
to determine the optimal approaches to the use of
these technologies in real industries such as writing,
marketing, and business. In addition, the paper
examines the impact of modern neural network
architectures on the quality of text generation,
and explores the features of using basic neural
network models for text generation. Criteria for
a comprehensive assessment of the quality of the
generated content are proposed, and prospects for
the development of synergy between information
technology and neural networks are identified.
Forecasts are given on the trends of the industry
development, including increasing the adaptability of
texts to the cultural or linguistic context.

Simplified Architecture of Distributed Information and Communication Systems (DICS)
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Outline of the main material of the study.
With the rapidly increasing complexity of modern
distributed information and communication systems
(DICS), there is a need for a comprehensive approach
to monitoring and managing the quality of information
services (QoS).

The enhanced architecture of Distributed
Information and Communication Systems (DICS)
consists of an expanded network of interconnected
components that ensure data storage, processing,
and transmission between users and cloud resources.
The central element is the cloud platform, which
provides computing power and is connected to data
servers and virtual machines. Data servers process
requests, interact with databases, and facilitate data
transmission through network routers.

To meet user needs and strict SLA requirements,
QoS monitoring and management systems must not
only diagnose the current state, but also proactively
prevent potential failures or dramatic deterioration in
performance. Several key factors complicate this task:

Dynamic changes in infrastructure. (DICS) consist
of interconnected subsystems (network routers,
data servers, virtual machines, containers, etc.), the
configuration of which can change at any time due
to load balancing, automatic autoscaling, or software
updates.

In multiservice environments, services with
varying degrees of criticality are provided
simultaneously.

Extended Impact of DDoS Attack on Network Latency and Packet Loss
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QoS degradation can arise from several
interconnected factors:

— Excessive user traffic may result in the
overloading of network channels, application servers,
or databases, disrupting normal operations.

— Insufficient computing resources often lead
to suboptimal performance of service components,
directly affecting their ability to handle requests
efficiently.

— Inefficient network routing that fails to account
for user traffic patterns or the geographic locations of
users and service components can exacerbate delays
and packet losses.

Solving the problem of proactive monitoring and
adaptive management of the quality of information
services in distributed ICS requires an integrated
approach that covers all levels of the system:
from physical and channel interaction (telemetry
collection, low-level monitoring) to high-level
service orchestration (dynamic scaling in the cloud,
reconfiguring routes in SDN, traffic prioritization).

Each node or group of nodes in the DICS is
equipped with agents that measure key indicators:
bandwidth, latency, jitter, packet loss, CPU
utilization, memory usage, virtual machine status, etc.
Data collection technologies. To minimize the delay
in data transmission, agents can perform primary
processing (aggregation, hashing) locally and send
the compressed information to central monitoring
nodes.

Alert system. In case of significant deviations from
normal indicators or critical events, notifications are
sent (via e-mail, SMS, push channels) and/or external
scripts are automatically called to trigger control
mechanisms.

Linear and polynomial regression. They are used
as basic approaches to identify trends (e.g., slow
growth of delay) and extrapolate short-term load.
ARIMA, SARIMA, and other time-based models.
Used for more accurate modeling of time series

with seasonal fluctuations (daily/weekly cyclicality).

Time (s) Machine learning methods (neural networks,
Fig. 2. Impact of DDoS attacks on latency
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Random Forest, XGBoost). They allow taking into
account nonlinear dependencies between parameters
and predicting unusual situations in advance. For
each indicator, statistical thresholds (mean, standard
deviation) are calculated, when exceeded, the system
generates a signal of a possible deviation. Clustering
models (K-means, DBSCAN). Metrics belonging to
clusters with low density or that do not correspond to
“typical” centroids are treated as anomalous. Distance
estimation (Mahalanobis distance, Isolation Forest).
Allows you to automatically detect points or entire
subsets of data that have atypical characteristics
compared to the majority. If possible, the central
components of the monitoring system should be
duplicated in geographically distant data centers.

Effective proactive monitoring and adaptive
management of information service quality in DICS
rely on continuous improvement and extension of
the monitoring infrastructure. As networks grow in
scale and complexity, new technological solutions
and architectural models become relevant to handle
emerging challenges.

By placing data preprocessing and partial analytics
(e.g., anomaly detection) at edge or fog nodes, the
system can reduce the load on central servers and
minimize latency.

Deploy monitoring agents across multiple public
or private cloud providers, enabling unified visibility
into distributed workloads. Harmonize telemetry
formats (e.g., OpenTelemetry) to collect data
consistently regardless of the cloud platform. Use
federated learning or distributed Al techniques to
train and improve anomaly detection models across
different cloud environments without transferring
raw data.

Incorporate deeper neural network architectures
(LSTM, GRU, Transformers) for more accurate
forecasting of network load and resource utilization.
Apply reinforcement learning for dynamic adaptation
strategies, where the monitoring system optimizes
its own decision-making policies based on real-
time feedback. Improves trust and transparency for
operators managing critical infrastructure.

Extend the monitoring system to collect and
analyze  security-related telemetry  (intrusion
attempts, unexpected port scans, lateral movement
in the network). Correlate security metrics with
performance data to detect malicious traffic patterns
that also affect QoS (e.g., DDoS attacks). Combine
anomaly detection with network policy enforcement
tools (firewalls, intrusion prevention systems) to
isolate compromised nodes or throttle suspicious
traffic. Implement runbooks or playbooks that trigger

automated mitigation steps based on predefined
security thresholds.

Adopt tools like Terraform or Ansible to define and
manage monitoring environments, enabling repeatable
and version-controlled deployments. Automate
scaling of monitoring agents or central servers in
response to usage spikes or newly deployed services.
By extending the proposed monitoring system with
edge/fog processing, advanced Al techniques, and
multi-cloud orchestration, organizations can achieve
even higher levels of agility, resilience, and efficiency
in managing distributed ICS. Incorporating enhanced
security metrics, self-healing mechanisms, and robust
disaster recovery strategies will further solidify the
system’s reliability and responsiveness.

The IMS platform, operating at the core network
level, is a key architecture enabling Voice over LTE
(VoLTE) and other IP-based multimedia services.
It consists of critical components responsible for
session control, subscriber authentication, and media
handling. These components function at various
sublevels within the core network:

1. Session control is managed by the Call Session
Control Function (CSCF), which operates at the
application signaling level.

2. Subscriber authentication is handled by the
Home Subscriber Server (HSS), functioning at the
database level.

3. Media handling is performed by the Media
Resource Function (MRF), which operates at the
media processing level.

Given the critical role IMS plays in delivering
VoLTE and multimedia services, it is essential to
implement robust firewalls to safeguard the network
against unauthorized access, cyberattacks, and service
disruptions. Firewalls, deployed at the network
level, particularly at the perimeter and between
network segments, are crucial for protecting the IMS
platform’s core infrastructure from external threats.
They filter incoming and outgoing traffic, ensuring
that only legitimate traffic is allowed while blocking
potentially malicious activity. Firewalls also provide
essential protection for sensitive subscriber data and
critical IMS components like the HSS and MREF,
maintaining both privacy and service reliability.

In addition to firewalls, a notification system,
operating at the application level, plays a vital role
in network management by providing real-time
alerts in the event of significant deviations from
normal operating conditions or critical system
failures. When key QoS parameters or network
events exceed predefined thresholds, the system
sends notifications via various channels such as
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email, SMS, or push alerts. This allows network
operators to be immediately informed of potential
issues, enabling quick intervention and minimizing
service disruptions. Furthermore, external scripts
can be automatically triggered in response to these
alerts, activating predefined mechanisms to control
or mitigate the impact of the issues. For example, if
a surge in packet loss or latency is detected, scripts
may be executed to reroute traffic, adjust resources,
or activate backup systems, ensuring the network
continues to perform optimally even during periods
of stress.

To complement this security layer, Vodafone
employs a sophisticated notification system,
functioning at the application level, to continuously
monitor its network. In the event of deviations from
expected QoS parameters (e.g., high latency, packet
loss, or jitter spikes), the system triggers immediate
alerts via multiple channels such as email, SMS, and
push notifications to the operations team.

For example, in the case of a major mobile operator,
parameters such as latency, jitter, packet loss, and
throughput are continuously monitored to assess
network performance. These metrics are measured
at the transport level of the network. Operators often
use regression models like linear and polynomial
regression to identify trends, such as gradual increases
in latency, allowing them to anticipate potential issues
and optimize network resources.

Time series models such as ARIMA and SARIMA
are employed to account for seasonal variations, such
as daily or weekly traffic cycles. These models help
telecom operators refine their predictions, making
them more accurate for specific time frames. Machine
learning techniques, including neural networks,
Random Forest, and XGBoost, are increasingly used
to capture complex, non-linear relationships between
network parameters. They offer an advantage in
predicting unexpected situations, such as sudden
spikes in traffic or network congestion, which would
otherwise be difficult to foresee using traditional
methods.

Additionally, statistical thresholds are set for each
QoS parameter (e.g., mean, standard deviation), and
the system is programmed to trigger alerts whenever
these limits are exceeded, signaling potential issues
that could affect service quality. Clustering methods
like K-means and DBSCAN are used to detect
outliers, with any metrics that deviate significantly
from typical patterns flagged as anomalies. These
anomalies can indicate a network fault or congestion
event, enabling operators to take preemptive action.
For more precise anomaly detection, distance-based
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methods like Mahalanobis distance and Isolation
Forest can be employed to identify data points or
subsets that exhibit atypical behavior.

In a live operator environment, such as
telecommunications networks, redundancy and
fault tolerance play a key role in ensuring high
availability, reliability, and performance. To achieve
this, monitoring systems are duplicated across data
centers located in different geographic regions.
A telecom operator may have data centers, for
example, in New York, Los Angeles, and Frankfurt,
where identical instances of the monitoring system
operate, including components for data collection,
processing, and notification delivery. This setup
ensures that if one data center fails — due to a
power outage, network disruption, or natural
disaster — the monitoring system automatically
switches to another data center. Load balancers,
such as HAProxy or Google Cloud Load Balancing,
distribute incoming monitoring traffic across these
data centers, taking into account latency, health
checks, and available capacity, reducing the risk of
a single point of failure and ensuring continuous
network monitoring.

Fault tolerance is further enhanced by
automatically launching backup instances for critical
components. Monitoring systems utilize modular
containerized components, such as data collectors,
analytics engines, and alerting modules, which are
managed through orchestration tools like Kubernetes.
This tool continuously monitors the state of containers
using liveness and readiness probes. For instance, if
the virtual machine running the analytics engine for
processing latency data fails, Kubernetes detects the
issue and restarts the container, minimizing downtime
and ensuring uninterrupted user service.
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Proactive network management is also a
key advantage of monitoring systems, as they
continuously track key performance indicators
such as latency, jitter, packet loss, and bandwidth.
Monitoring agents installed on network devices —
routers, switches, and base stations — send real-time
metrics to the monitoring system using protocols like
SNMP or streaming telemetry, such as gRPC and
OpenTelemetry. This data is stored in time-series
databases like InfluxDB or Prometheus, allowing
efficient querying and visualization through tools
such as Grafana. Alerting rules are configured to
send notifications when predefined thresholds are
exceeded — for example, if latency surpasses 100 ms
for five minutes, the on-call team receives an alert via
PagerDuty. This continuous monitoring helps detect
early signs of network degradation before they affect
users. If, for instance, latency on a particular network
path begins to rise, the monitoring system triggers
an alert, allowing operators to reroute traffic to less
congested paths and prevent customer complaints
about dropped connections or slow internet speeds.

Additionally, monitoring systems provide real-
time insights to ensure stable and high-quality service.
Machine learning models integrated into monitoring
pipelines predict traffic spikes or anomalies.
Automation tools like Ansible or Terraform execute
predefined scripts based on this data — if, for instance,
tower bandwidth usage exceeds 80 %, additional
resources are allocated automatically. This proactive
approach allows telecom operators to maintain stable
and high-quality service even during peak load
periods while adhering to service level agreements
(SLASs).

In the case of Vodafone, ensuring optimal QoS
is essential for maintaining the reliability of their
voice and multimedia services, especially in a
highly competitive market. The operator consistently
monitors key QoS parameters like latency, jitter,
packet loss, and throughput to ensure a seamless
experience for its users.

Vodafone also leverages time series models such
as ARIMA and SARIMA to account for daily and
weekly traffic cycles, which are critical for managing
network load during peak times. In addition to these
traditional methods, Vodafone has incorporated
advanced machine learning techniques, such as
neural networks and XGBoost, to better handle non-
linear dependencies in network traffic.

To detect performance anomalies, Vodafone
employs clustering techniques like K-means and
DBSCAN, identifying any metrics that deviate
significantly from typical patterns. This enables

the company to spot potential issues early, such as
network outages or sudden drops in service quality.
Advanced anomaly detection methods, including
Mabhalanobis distance and Isolation Forest, are used
to pinpoint specific instances where network behavior
falls outside expected norms, allowing for faster issue
resolution.

Vodafone also emphasizes redundancy and
fault tolerance in its monitoring systems. To
ensure uninterrupted service, they replicate critical
components across geographically diverse data
centers.

1. Real-Time Traffic Rerouting. Vodafone’s
monitoring systems continuously analyze network
congestion levels. If a particular network path
experiences excessive latency or packet loss, traffic
is dynamically rerouted through alternative, less
congested routes.

2. Proactive Network Maintenance. By integrating
predictive analytics, Vodafone can anticipate hardware
failures in critical infrastructure such as base stations
and fiber optic links. For example, if a base station
starts showing a gradual increase in error rates or
unusual temperature spikes, preemptive maintenance
can be scheduled to prevent potential outages.

3. Optimized Video Streaming Performance.
Using real-time telemetry data, Vodafone adjusts
video streaming bitrates based on network conditions.
If the system detects high congestion in a region, it
dynamically reduces the resolution of video streams to
prevent buffering, ensuring a smooth user experience.

4. Load Balancing in Cloud Infrastructure.
Vodafone’s cloud-based services leverage load
balancers like HAProxy and Google Cloud Load
Balancing to distribute traffic among multiple servers.
If one server cluster experiences high CPU or memory
usage, new sessions are redirected to underutilized
servers to maintain consistent performance.

5. Emergency Response Management. In the
event of natural disasters or large-scale network
failures, Vodafone’s monitoring system prioritizes
emergency communications by allocating additional
network resources to first responders. This ensures
that critical services remain operational even under
extreme conditions.

6. Customer Experience Enhancement through
Al-Driven Support. Al-driven monitoring tools
analyze customer complaints related to network
quality and correlate them with real-time performance
data. If multiple complaints arise from a specific
area, Vodafone’s system automatically triggers an
investigation, allowing for faster resolution of service
issues.
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Comparison of QoS Metrics: Vodafone Germany vs Testbed
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Fig. 5. Comparison of QoS Metrics

By employing a combination of predictive
analytics, machine learning, and robust infrastructure,
Vodafone ensures a consistently high level of QoS
for its users while proactively addressing network
challenges in real time.

To evaluate the QoS of the IMS platform, multiple
test scenarios were executed under controlled
conditions. End-to-end testing was performed by
initiating VOLTE calls between test devices while
monitoring key performance indicators such as call
setup time, voice clarity, and connection stability.
Load testing involved simulating thousands of
concurrent calls and data sessions to observe system
behavior under peak traffic. Packet-level analysis
was conducted using Wireshark, capturing real-time
traffic to measure latency, jitter, and packet loss.

To illustrate real-world QoS challenges, we
analyzed Vodafone VoLTE network performance.
During peak hours, call setup time increased by
3 %, reaching 310 ms, slightly exceeding the 300 ms
threshold. Packet loss under heavy load rose to
1.5 %, affecting voice clarity. Network logs showed
that congestion primarily occurred at eNodeB
backhaul links. Using the formula for Packet Loss
Rate (PLR):

LP
PLR =(7].1oo, (1)

where LP — Lost Packets; 7— Total Packets sent

For a stress test with 10 million packets sent and
150,000 lost packets, the calculated PLR was 1.5 %.
Comparing our testbed results with Vodafone real-
world data:

1. Latency remained stable in both cases,
averaging 140 ms.

2. Packet loss exceeded thresholds (1.5 % vs.
1.2 %), suggesting bottlenecks in high-load scenarios.

3. Jitter spikes (Vodafone: 35 ms, Lab: 30 ms)
were noticeable but tolerable.

To assess the impact on call quality, Hammer Call
Analyzer measured parameters like MOS (Mean
Opinion Score) and call drop rates during peak
load periods. Advanced machine learning models,
specifically Long Short-Term Memory (LSTM)
networks, were trained on historical network data
to predict congestion events and optimize resource
allocation dynamically. These Al-driven insights
allowed for real-time adjustments in the network
configuration, improving QoS by proactively
managing capacity and mitigating performance
degradation, ensuring a seamless VOLTE experience
for Vodafone’s users.

The data from the stress test with 100,000
concurrent calls reveals several important insights
into the performance of the network under heavy
load. Below is a more detailed analysis based on the
metrics provided:

1. The CSSR s slightly below the expected value,
indicating a small number of failed call setups under
stress. Although 98.5 % is ahigh success rate, this small
degradation may result in some users experiencing
issues when trying to initiate calls during peak times.
This metric is critical for user experience, and while
it is still acceptable in most cases, attention should
be given to optimizing network resource allocation to
reduce call setup failures during high demand.

2. Under normal conditions, the packet loss rate
is within acceptable limits, but during the stress test,
packet loss increased to 1.2 %, slightly exceeding the
expected threshold. This suggests that the network is
experiencing congestion under heavy load, leading
to packet loss. Although this is marginally above the
threshold, it indicates a potential area for optimization.
Packet loss above 1 % can have a significant impact
on service quality, especially for VOLTE calls, leading
to audio dropouts or poor call quality.

3. The average call setup time is within the
acceptable range, even under load. A 2 % increase in
call setup time under stress is well within operational
limits, suggesting that the network is managing to

Table 2
Performance Metrics
. Call Setup Success | Packet Loss | Average Call . System
Metric Rate (CSSR) Rate Setup Time Jitter | Latency | 1, o ughput
Expected Value >99 % <1 % <300 ms <30ms |<150ms| >1 Gbps
Measured Value 98.5 % 0.8 % 280 ms 25 ms 140 ms 1.2 Gbps
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handle the load efficiently in terms of call initiation.
However, it is important to continue monitoring this
parameter as increased traffic may eventually lead to
higher delays.

4. Jitter remains within acceptable limits during
normal operation. However, during the stress test,
occasional spikes in jitter beyond 30ms were observed.
While jitter in itself is not an immediate concern, these
spikes can lead to noticeable issues in voice quality
during calls. VOLTE traffic is particularly sensitive
to jitter, and periodic fluctuations can degrade user
experience by causing choppy audio or dropped
calls. This suggests a need for further optimization to
mitigate jitter during peak periods.

5. Latency remains stable and within the
acceptable limits even under stress. The network
has shown resilience in handling the increased
traffic without experiencing excessive delays in
packet transmission. While latency is well within
the threshold, periodic monitoring of the network
infrastructure is necessary to ensure it remains stable
during prolonged periods of high traffic.

6. In the case of Vodafone, ensuring optimal
QoS is essential for maintaining the reliability of
their voice and multimedia services, especially in a
highly competitive market. The operator consistently
monitors key QoS parameters like latency, jitter,
packet loss, and throughput to ensure a seamless
experience for its users. For instance, Vodafone uses
linear and polynomial regression models to track
trends in latency and identify gradual increases that
could indicate network stress. By analyzing these
trends, Vodafone can predict potential bottlenecks and
take corrective action before they impact customers.

Even under load, the network maintained
throughput above 1 Gbps, ensuring that data-
intensive  applications can function without
significant degradation. To improve QoS during high
traffic periods, implementing traffic prioritization
mechanisms such as DiffServ or MPLS can help
manage network resources more efficiently. These
protocols enable better differentiation of traffic types,
ensuring that critical services like VOLTE receive
higher priority and are less likely to be affected by
congestion. Addressing packet loss requires further
capacity planning, particularly during peak periods,
which may involve upgrading hardware such as routers
and switches or allocating additional bandwidth to
prevent congestion. Proactive bandwidth monitoring
tools should be employed to detect potential congestion
points before they impact performance.

Introducing dynamic and adaptive QoS policies
based on real-time network load can optimize

resource allocation. By leveraging real-time data
on network conditions such as traffic volume, load
distribution, and QoS parameters, the network can
adjust its policies dynamically to ensure optimal
service quality. For example, during periods of high
load, the system could automatically allocate more
resources to maintain call quality, while during low-
load periods, resources could be reallocated to other
services. While jitter remains within acceptable limits
in most cases, occasional spikes suggest the need
for jitter mitigation strategies. Techniques such as
buffer management, prioritization of VoLTE traffic,
and improving network resilience can help reduce
jitter during peak periods. Additionally, investing in
network infrastructure that reduces congestion and
improves packet delivery consistency can help keep
jitter levels within desired thresholds.

Continuous monitoring should be implemented
for all key QoS parameters, especially under heavy
traffic conditions. This could include re-routing
traffic, adjusting network configurations, or alerting
the network operations team to potential problems.
While the network performs well under most
conditions, critical areas such as packet loss, jitter,
and dynamic traffic handling require optimization to
maintain a consistently high-quality user experience,
particularly during high-demand periods.

Conclusions. This paper presents the development
of a multi-level monitoring system for distributed
information and communication systems (DICS), which
includes telemetry agents, centralized data storage, and
real-time analysis tools. By integrating technologies
such as machine learning, edge/fog computing, and
automated orchestration, the system ensures high
QoS even under dynamic network conditions. The
integration of advanced features like anomaly detection
and adaptive resource management highlights the
system’s ability to maintain a high level of Quality of
Service (QoS) while reducing operational costs.

By detecting malicious activities such as DDoS
attacks and integrating with firewalls and threat
detection modules, the system ensures that security
incidents are identified and mitigated in real-time.
This proactive defense not only protects the network
but also minimizes disruptions, ensuring continuous
service availability.

This enables the detection of potential issues early,
such as network outages or sudden drops in service
quality. Advanced anomaly detection methods,
including Mahalanobis distance and Isolation Forest,
are used to pinpoint specific instances where network
behavior falls outside expected norms, allowing for
faster issue resolution.
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The analysis of the IMS platform in the context
of a telecom system has provided valuable insights
into the performance, security, and reliability of
VoLTE services. The study examined key aspects
such as Quality of Service (QoS) parameters,
security mechanisms, and automated notification
systems to ensure a seamless user experience. The
findings highlight the importance of continuous
monitoring, predictive analysis, and proactive
network management in maintaining high service

quality.
The implementation of these security
mechanisms ensures the integrity of critical

components like the Home Subscriber Server (HSS)
and Media Resource Function (MRF). Key QoS
parameters, including latency, jitter, packet loss,
and throughput, were analyzed using statistical
and machine learning models. Regression models,
time series forecasting, and clustering methods help
identify performance trends and detect anomalies.
These techniques enhance the ability to optimize

network performance and anticipate congestion
before it affects end-users.

The study included end-to-end VOLTE call testing,
load testing, and packet-level analysis using tools like
Wireshark. Performance degradation was observed
during peak traffic periods, particularly in packet loss and
jitter. Stress testing confirmed that under heavy loads,
network congestion primarily occurs at the eNodeB
backhaul links. The system met most KPIs but showed
slight degradation under peak conditions. The call setup
success rate was slightly below the expected threshold.
Packet loss exceeded the 1 % limit under heavy load.
Jitter occasionally spiked beyond the 30ms threshold,
while latency remained within acceptable limits. System
throughput exceeded expectations, ensuring sufficient
capacity for handling network traffic. IMS-based
VOLTE networks meet most QoS standards, though
peak traffic can cause slight degradation. Proactive
monitoring and dynamic resource management are
essential for sustaining high service quality, especially
in the context of 5G development.

Bibliography:
1. ITU-T Recommendation E.800 (Rev. 09/2008). Definitions of terms related to quality of service. International

Telecommunication Union, 2008.

2. NetFlow services and applications white paper. Cisco, 2004.
3. Kumar B., Krishnamurhty A., Mohan R.M. Machine learning based presaging technique for multi-user

utility pattern rooted cloud service negotiation for providing efficient service. 2020 2nd international conference
on innovative mechanisms for industry applications (ICIMIA), Bangalore, India, 57 March 2020. 2020.
URL: https://doi.org/10.1109/icimia48430.2020.9074895

4. Peleh N., Shpur O., Klymash M. Intelligent detection of ddos attacks in SDN networks. Lecture notes in
electrical engineering. Cham, 2021. P. 210-222. URL: https://doi.org/10.1007/978-3-030-92435-5 12

5. Traffic engineering and QoS/QoE supporting techniques for emerging service-oriented software-
defined network / M. Beshley et al. Journal of Communications and Networks. 2024. Vol. 26, no. 1. P. 99-114.
URL.: https://doi.org/10.23919/jcn.2023.000065

6. Abeykoon V.L., Fox G.C., Kim M. Performance Optimization on Model Synchronization in Parallel
Stochastic Gradient Descent Based SVM. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), Larnaca, Cyprus, 14-17 May 2019. 2019. URL: https://doi.org/10.1109/
ccgrid.2019.00065.

7. Concept of intelligent detection of ddos attacks in SDN networks using machine learning / M. Klymash et al.
2020 IEEE international conference on problems of infocommunications. science and technology (PIC S&T),
Kharkiv, Ukraine, 6-9 October 2020. 2020. URL: https://doi.org/10.1109/picst51311.2020.9467963

Bo6uk 10.B., llInyp O.M. PO3POBKA KOMIIJIEKCHOI CHCTEMHW MOHITOPUHT'Y
B PO3MOIJIEHUX TH®OPMAIIHHO-KOMYHIKAIIMHUX CUCTEMAX

Y yiti cmammi posensdaromvca numanusi po3poOKu ma 6nposaoddHCenHs KOMNJIEKCHO20 pilleHHsT Ol
MOHIMOPpUHZY MAa YNPAGIIHHS, CHPAMOBAH020 HA 3abe3neueHHs Gucokoi saxocmi obcayeosyeéants (QoS)
y  posnodinenux iHpopmayiuno-komyHikayitinux cucmemax (PIKC). Ocuoena yeaeca npudiniemuvcs
nepeoymMosam i MexXHOAOIUHUM OCHOBAM, HEeOOXIOHUM O PAHHbO2O GUABILEHHS AHOMANIU Y pobomi
Mepedci ma agmoMamuyHo20 nepepo3nooiy pecypcié HA PIZHUX PIBHAX IHOPACMPYKMYPU — Mepedcesomy,
obuucnosareHomy ma cepgichomy. Ockinvku cyuacui PIKC  ¢yukyionyrome y oOedani CKIAOHiwUX
i QUHAMIYHIWUX CepedosUax, NIOMPUMKA CMAOiIbHOCME Ma AKOCMI 00Cy208)Y8AHHA BUMALAE AOANMUBHUX,
IHMeNeKMyanbHUX i MAcCumabo8aHux pilieHs.

3anpononosana apximexkmypa 0Oazyemvcsi Ha Hme2payii po3nooiieHux acewmie 300py meremempii,
YEHMPANi308aHUX cUCmeM 30epieanHs meilemMempuyHux OaHux ma 2iOpuonux memodie 0o6podxu iHgopmayii.
Li incmpymenmu npayioromo pazom 015 aHaizy NOKA3HUKIE NPOOYKMUSHOCII, MAKUX AK 3AMPUMKA, Odxcummep,
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8mMpama naxKemie, 3a6aHmMadCeHHs nPOYecopd ma UKOPUCIAHHS NPONYCKHOT 30AMHOCII 8 PEANCUMI PeanibHO20
uacy, wjo 00360J1A€ NPOAKMUBHO Peazy8amu Ha NO2ipuLents npOOYKMUSHOCMI abo NepesanmadiCents pecypcis.

Kniouoeum acnexmom cucmemu € ii 30amuicms 00 RPUUHAMMSL PilleHdb | AGMOMamu3ayii, IKa 00CA2acmvCs
3a605KU iHMezpayii 3 cyuacHumMu cepedosuujamu opxecmpayii ma ynpaeninus mepedicero. Li cepedosuwya
3abe3neyyioms adanmayiio iHGpacmpykmypu mauxice 6 pearbHOMY 4aci HA OCHO8I AHANIMUYHUX OAHUX,
AKI HA0ae cucmema MOHIMOPUH2Y, Wo 00360JIE Peanizosy8amu MEXanizMu camosioHo6eH s, OALAHCYBAHHSL
HABAHMAdICEHHS MA ABAPIIHO20 NepemMuKants Oe3 yyacmi n0ouHu.

Pospobnene piwenna mae moO0yivHy cmpykmypy ma 3aOe3nedye CyMicHicmv, wo 00360J€ 1e2KO
iHmezpysamu 1020 y 6dce HAAGHI niaam@opmu YnpaseninHa mepedcelo ma cepsicamu. Bono nidsuwgye
HAOIliHiCMb, 8I0MOBOCMINIKICIL 1 MACUMAab08aHicmsy pO3NOOILIEHUX apPXIMeEKmyp, O0CoOnUB0 6 YM0o8ax
BUCOKO20 KOPUCTYBAYLKO20 HABAHMANCEHHS, 2e02paghiuHoi pO3noOiIeHOCI, 2emepo2eHH020 cepedosuyd
(6xarouarouu xmapHi it nepuepiiini oouucients) abo HcopcmkuUx uUMo2 wooo pieHs obcayeosysanns (SLA).
3as0saku iHmeneKmyanbHOMy MOHIMOPUHZY Ma A8MOMamuutii adanmayii cucmema 3abesneuye cmabitbhy
AKICMb 00CIY208Y8aHHS, eheKmusHicms pobomu ma Cmitikicms HA8ims y pasi Henepeddauy8anHux NiKoeux
HABaHmMadiceHb Uy Kibep3azpos.

Knwuogi cnosa: posnooineni IKC (PIKC), monimopune, ynpagninusa axicmio o6ciyzogysanus (QosS),
A0anMuUGHI aneopummu, aHOMAIl, MawunHe HA8UAHHA, MACUMAOYEAHHS.
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